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We discuss some linear acceleration methods for alternating se-
ries which are in theory and in practice much better than that of
Euler-Van Wijngaarden. One of the algorithms, for instance, al-
lows one to calculate > (—1)¥ay with an error of about 17.93 7"
from the first n terms for a wide class of sequences {ay}. Such
methods are useful for high precision calculations frequently ap-
pearing in number theory.

The goal of this paper is to describe some lin-
ear methods to accelerate the convergence of many
alternating sums. The main strength of these meth-
ods is that they are very simple to implement and
permit rapid evaluation of the sums to the very high
precision (say several hundred digits) frequently oc-
curring in number theory.

THE FIRST ACCELERATION ALGORITHM

The typical series we will be considering are alter-
nating series S = Y, (—1)*a;, where a;, is a rea-
sonably well-behaved function of £ which goes slowly
to 0 as k — oo. Assume we want to compute a good
approximation to S using the first n values a;. Then
our first algorithm is:

Algorithm 1.
Initialize: d = (3 +V8)"; d= (d+1/d)/2;
b=—-1; c=—-d; s=0;
For k=0 upto k =n — 1, repeat:
c=b—c s=s+c-ag;
b= (k+n)(k—n)b/((k+3)(k+1));
Output: s/d.

This algorithm computes an approximation to S as a
weighted sum of ag, ..., a,_; with universal rational
coefficients ¢, ;/d, (= ¢/d in the notation of the
algorithm; note that both ¢ and d are integers). For
instance, for n = 1, 2, 3, 4 the approximations given
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by the algorithm are
2a0/3,
(16ap—8ay)/17,
(98ap —80a; +32as) /99,
(576ao—544a; +384a, —128as3) /577,

respectively. The denominator d,, grows like 5.828"
and the absolute values of the coefficients c,, ; de-
crease smoothly from d,, — 1 to 0. Proposition 1
below proves that for a large class of sequences {a;}
the algorithm gives an approximation with a relative
accuracy of about 5.8287", so that to get D decimal
digits it suffices to take n equal to approximately
1.31D. Notice that the number of terms and the
time needed to get a given accuracy are essentially
independent of the particular series being summed,
if we assume that the a;’s themselves are either easy
to compute or have been precomputed; on a Sparc-
station 5 using Pari, for instance, the computation
of S to 100 or 1000 decimal digits requires about .1
or 6 seconds, respectively. The algorithm uses O(1)
storage and has a running time of O(1) per value of
ay, used.

Proposition 1. For integers n > k > 0 set

(B+V8)" + (3 V8"
2

(- St ()

=0 Y <”+m>22m. @)
n+m\ 2m

m=k+1

d, =

and

Cn,k -

Assume that the a; are the moments of a positive
measure on [0,1] and set

> C
n,k
S=Y (—1)a, —ak

k=0
Then s 55
IS—S,| <>~ —22__
d, (34 V8)"
Proof. By assumption, a; = fol a¥ dp, where dy is a
positive measure. Then

(=1)*a —/1 ! d
k — o 1—|—I H

o0

S =

k=0

the interchange of summations being justified by the
positivity. Let { P, (x)} be a sequence of polynomials

such that P, has degree n and d,, := P,(—1) # 0.
Set
Py(~1) —
l+z Z G 2"

Define S,, as S,, in the proposition but with d,, and
Cnr instead of d,, and ¢, ;. Then

1 1Pn(_1)_Pn(x)
du=5—
0 /0 T+ p=:5—R,,

1
P ()
R, = / ———du, (3)
o P+ "
and by virtue of the positivity of du we can estimate
the “error term” R, by

say, with

M, ! M,
®I< G ), T mCT S
where M,, is the supremum of |P,(x)| on [0,1]. It
follows that M, /|P,(—1)| is an upper bound for the
relative error made by approximating S by S,,.

We now choose for P, (X) the polynomials defined
by

Pn(sin2 t) = cos 2nt, (4)

so that P,(z) = T,,(1 — 2z) where T),(x) is the or-
dinary Chebyshev polynomial. Clearly M, =1 and
d, = P,(—1) = d,, with d,, as in (1).

The recursion

P (X) = 2(1 = 2X) P, (X) — Py (X)

implies by induction the explicit formula

Pn(X):zn:(—l)m n (”+m>22mxm, (5)

n-+m 2m

m=0

SO Cp gk = Cpx With ¢, x as in (2). This completes the
proof of the proposition. O

Remarks. 1. The method implicit in Proposition 1 is
well known in numerical analysis under the head-
ing of “Padé type approximation” [Brezinski 1980;
Eiermann 1984; Gustafson 1978/79; Wimp 1981].
As we mentioned above, we are concerned with cal-
culations to a high degree of accuracy, where the
number of digits gained per number of steps, and the
amount of storage required, are crucial. Thus our
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emphasis is different from that in numerical analy-
sis, where one usually works in fixed, and relatively
low, precision. The implementation of Algorithm 1
is good in both respects.

2. The classical algorithms found in the literature
(see [Press et al. 1988]) are Euler’s method or Euler—
Van Wijngaarden’s method. These can be shown to
correspond respectively to the polynomials P, (X) =
(1—X)™ with convergence like 27" and polynomials
P,(X) = X1 - X)" with a + b = n dependent on
the particular sequence, with convergence like 37"
for a = n/3. Note that a direct implementation of
the algorithm given in [Press et al. 1988] needs a lot
of auxiliary storage if we want high accuracy, while
our method does not.

3. Algorithm 1 computes “on the fly” the coeffi-
cients of the polynomial (P,(—1)—P,(X))/(1+X),
where P,(X) =T,(1 —2X). Equivalently, we could
also compute on the fly only the coefficients of the
polynomial P,(X) itself and use the partial sums
of the alternating series instead of the individual
terms, using

n n m—1
- 5t () S

=1 k=0

This can be particularly useful when the sequence of
partial sums is naturally given, and not the a;, them-
selves, as in the continued fraction example men-
tioned at the end of this paper.

4. The hypothesis that the a,’s are moments of a
positive measure on the interval [0,1] is a well known
one, and is equivalent by a famous theorem of Haus-
dorff [1923] to the total monotonicity of the sequence
{a,}, in the sense that for each fixed k, the sequence
{A*a,} of the k-th forward differences of {a,} has
constant sign (—1)F.

5. In addition to this, trivial modifications are pos-
sible. For example, one can replace the step d =
(d +1/d)/2 by the simpler one d = d/2, since this
modifies the final result by a negligible amount, but
leaves d as a nonintegral value. We could also im-
mediately divide by d (initializing b to —1/d and ¢
to —1). In our implementation each of these modi-
fications led to slower programs.

6. We proved convergence of the algorithm (at a
rather fast geometric rate) under the above condi-
tion. However, examples show that it can be applied

to a much wider class of series, and also, as is usual
in acceleration methods, to many divergent series.

7. The choice of the Chebyshev polynomial can be
shown to be close to optimal if we estimate the re-
mainder term R,, crudely as we did above. On the
other hand, as we will see below, for a different class
of alternating series, we can estimate R, more pre-
cisely and find much better polynomials P,. The
corresponding algorithms and their analysis seem to
be new.

8. If the sequence a;, already converges at a geomet-
ric rate, better algorithms are possible which are
trivial modifications of the ones presented in this
paper. For example, if one knows in advance that
—In(ay) ~ kln(z) for some z > 1, then in Algo-
rithm 1 simply replace 3+v/8 by 22+1+2y/2(z + 1)
and multiply by z the right hand side of the recur-
sion formula for b. The convergence is in (2z + 1 +
2y/z(z+1))~", and thus faster than the direct ap-
plication of Algorithm 1. Similar modifications are
valid for the other algorithms of this paper. The
details are left to the reader.

To illustrate Algorithm 1, we give a few examples.
Each can also be treated individually using specific
methods.

Example 1. By taking logarithms we can compute the
product

= T+ 57)
A= ——2=1 —1.0621509055...
El L(1+5)

rapidly to high accuracy. The product is slowly con-
vergent and the gamma function is hard to compute,
so our method is very useful here. In fact, as we will
see below, Algorithm 25 is even better in this case.

Example 2. Similar remarks apply to the sum

o0

(2
B =" (~1)"Li, (5) = 1.1443442096 . . .

n=2

where Liy(z) = Y72 «*/k? is the dilogarithm func-
tion. This sum arose in connection with the compu-
tation of a certain definite integral related to Khin-
chin’s constant [Borwein and Crandall > 2000].
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Example 3. The Riemann zeta function can be calcu-
lated for reasonable values of the argument by
1— 21—3 — (
( )66 =2
and we find values like ((3) = —1.4603545088. .. or

even
¢((—=1+41¢) =0.0168761517... — 0.1141564804. .. i

to high accuracy and very quickly (comparable to
Euler-Maclaurin). Note that the latter example
works even though the coefficients a, of our “al-
ternating” series Y (—1)*a; are not alternating or
even real and do not tend to zero. The derivatives
of {(s) can also be calculated similarly, e.g. we can
compute

. > (—1)*logn B
Cri=) g = 01932888316
by Algorithm 1, and then use the identity C;, =
(1=v2)¢'(3) + V2 In2((3) to deduce the value of
¢'(3) = —3.9226461392. .. . In a similar manner, we
can compute
= (=1)"logn

Cy = ————— =0.1598689037 . ..
by Algorithm 1, and then use the identity Cy; =
log2(y — 1/2log2) to deduce the value of Euler’s
constant v = 0.5772156649. .. .

Moreover, as suggested to us by R. Sczech, we
may even use Algorithm 1 to sum the divergent se-
ries

Cy =Y (~1)"logn = —0.2257913526 .. . ,
n=1
recovering the known value —log(%) of the deriva-
tive of (1 —2'7%)((s) at s = 0.

Note that in the first two examples a; was in fact
the restriction at points of the form 1/k of a function
analytic in the neighborhood of 0, and so other tech-
niques could be used such as expanding explicitly a
in powers of 1/k. However, in the last examples, this
cannot be applied.

Computing the constants C; for ¢ = 1,2,3 using
algorithm 1 with n = 655 took about 20 seconds in
a Gp-Pari implementation on a 300 MHz computer
running Linux. The relative errors were: 5 x 10750
for C;, 5x107°% for C, and 2 x 1075 for C5, not far

from the bound 1/dgss ~ 7 x 10~°°% of Proposition
1.

If we make different assumptions on the sequence
{a}, we can use better polynomials than the Cheby-
shev polynomials. For example, we can reason as
follows. Assume that du = w(x)dx for a smooth
function w(z). Then taking P,(X) and d,, as in (4)
and (1) respectively and setting x = sin®¢, we get
from (3)

sin®t) sin 2t

i dt
1 +sin’t

w/2
d,R, = / cos(2nt) wl
0

= /ﬂ/z cos(2nt) h(t) dt

for a smooth function h(t). If we integrate twice by
parts, we get

d,R, = 1 ((=1)"c1 + ¢2)

4n?
1 7T/2
I ), cos(2nt) h"(t)dt, (6)
for some constants ¢; = h'(7/2) and ¢, = —h'(0).

If we multiply both sides of this equation by n?,
then the first term ((—1)"¢; + ¢2) has period 2.
This suggests replacing the polynomial P,(X) by

the polynomial
PY(X)=n’P,(X) — (n—2)*P,_,(X).

It is then easily seen that for the new remainder
RW we have d,R(Y) = O(1/n°) instead of O(1/n?).
Hence for our purposes P! is a better polynomial
than P,. Notice also that

2

PO (sin® ¢) = %% (sin(26) sin(2(n — 1)t)).

Continuing in this way, we define a double family of
polynomials P{™ as the m-th difference (with step
2) of the sequence n™*' P, (where we set P_, = P,
for n > 0 since cos(2nt) is an even function of n),
and find that for m > 0

POV (sin? 1) = = (L™ (sin(26)™ sin(2(n — m)1))

2 (&
The corresponding remainder term R(™ satisfies
an;m) — O(l/n2m+2)

(and even O(1/n*™*3) if m is odd) as n — oo for
fixed m, so we get better and better sequences of
polynomials.
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As polynomials in X, these polynomials can be
computed either from the formula giving the m-th
difference, i.e.,

) = 3 1 (M) - 2 R ()

r
0<r<m

(where we naturally set P_,(X) = P,(X)) or by the

formulas

P(m) (X) _ 2m+r—1(6D)r 58

n—m—1
2n—2m
-1 k Xk—i—r 1—X n—m—1—k+r
(Z( F (i) aex) )

where m + 1 =2r +s with 0 <s <1,

D=" and 5:2X(1—X)%+1—2X.

dX’
This suggests taking either the diagonal sequence
A, = PV /(2" 1n)) (7)

or the sequence
B, =P /((n—m)(m+1)!2™) 8)

with m = |n/2], where the (unimportant) normal-
izing constants have been chosen so that A4,(0) =

B,(0) = 1 (other ratios between m and n could
be considered and we will briefly comment on this
later).
The first few values are
Ap(X) =
AZ(X) 1 —8X +8X7,
A3(X) =1-20X +54X? — 36X°,

and B, (X) = A,(X) for n < 4.
Note that the formulas giving the polynomials A,
are particularly simple: we have

L, 1 a

A, (sin“t) = Sl dpr (sm 2t) 9)
and

27 d oo d2 N\
A (X) = 1-2X +2(X—-X?
() = o (-23) 20302 )

(X" (1-X)"(1-2X)")

ifn=2r+swith0<s<1.

TWO FLAVORS OF THE SECOND ALGORITHM

Algorithm 1 can be immediately generalized to any
sequence (), of polynomials, except that the coef-
ficients of (), cannot be computed on the fly, thus
giving rise to the following family of algorithms.

Algorithm 2,.
Let Q,(X) =1 _ b X
Setd =Q,(—1); ¢c=—d; s=0;

For k=0 upto k =n — 1, repeat:
c=b,—c s=s4+c-ay;
Output: s/d.

In particular, applying this to the families @,, =
A, and @, = B, (defined in (7) and (8) respec-
tively), we obtain two algorithms 24 and 2 which
are of the same sort as Algorithm 1 in that they out-
put an approximation .S,, which is a universal ratio-
nal linear combination of ag,...,a,_1. The values
for n = 1 and n = 2 are 2a¢/3, (16ay — 8a;)/17
as before, while those for n = 3 and n = 4 are
(110ag — 90a; + 36a2)/111 and (2288ay — 2168a; +
1536a; — 512a3)/2191, respectively (since A, = B,
for n < 4, the coefficients are the same for both
algorithms up to that point).

We now analyze the speed of convergence of these
algorithms. For Algorithm 2,4 we will find that it is
like 7.89~" for a large class of sequences {a;} and
like 17.93~™ for a smaller class, both better than the
5.837" we had for Algorithm 1.

For the same two classes of sequences, Algorithm
25 will be like 9.567" and 14.417". In other words,
depending on the sequence Algorithm 2,4 or 25 may
be the better choice.

On the other hand, unlike Algorithm 1, we do
not have a quick way to compute the individual co-
efficients ¢, ;, in time O(1) each but must compute
(and store) the whole polynomial A, (X) or B, (X).
As a result, these algorithms require storage O(n)
and time O(n?) instead of O(1) and O(n) as before.
Thus they are inferior to Algorithm 1 if the numbers
ay, are easy to compute (like a, = 1/(k + 1)), but
superior to it if the main part of the running time is
devoted to the computation of the a; (as in Exam-
ples 1 or 2 above), or in the extreme case when we
only know a fixed number of values ag, a1,...,0,_1
and want to make the best guess of the value of
>"(—1)*ay, on the basis of this data.
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To state the result we need the constants defined
by
B4 = coshay = 7.8898395.. . ,
Bp = " =9.55699... ,
Ya = Baro = 17.9340864. .. ,
VB = Bpy\/To = 14.408763 ... .

Here aqy = 2.754682... and ap = 2.2572729... are
the unique real roots of ay — tanhay = 2L and
ap — e “Bsinhap = 2L, respectively, where L =
log(1 + v/2), and ry = +/4ty/sindt, = 2.27306.. .,
where ¢t = 0.652916 . .. is the unique root in [0, 7/2]
of t§ + L* = £ to tan 2¢o.

In addition, let CA be the union of the images in
the complex plane of the two maps

t s sin®(t — (sin(2t)/2)(cos(2t) £ isin(2t))),

for 0 < t < 7/2, and let CB be the union of the
images in the complex plane of the two maps

£ sin? (t ~ (rosin(2t)/2)
(ro cos(2t) £iv/1 — 12 cos(2t)? )),
for to <t < 7m/2 —ty (see Figure 1).

Proposition 2. Assume that the coefficients ay are
given as moments,

1
ak:/ w(z) 2" d.
0

For Q = A or Q = B, let R? = S — S9 be the
difference between the true value of S and the output
SQ of Algorithm 2.

1. If w(x) extends analytically to the interior of the
region bounded by the Curve CA, then for Q = A
or Q = B, |RY| is bounded by (Bg + o(1)) ™.

2. If w(x) extends analytically to the whole com-
plex plane (or only to the interior of the region
bounded by the Curve CB), then for Q@ = A and
Q = B, |R?| is bounded by (yg +o(1))™".

In fact the proof will show that to get convergence
like 7" we can allow singularities 2™~/ (m > 0)
at the origin (i.e., it is sufficient if zw(z?) rather
than w(x) itself be analytic). If w is analytic in a
smaller region than those described in Proposition
2, then we still get exponential convergence of S<
to S, but with a worse constant.

Here are a few simple examples. We set 8 = g
and v = 7o with Q@ = A or Q = B, depending on
whether Algorithm 24 or 25 is used.

Example 4. Set a, = 1/(k + 1), S = log2. Here
w(z) = 1, so the proposition applies directly to give
speed of convergence v~ ". Hence in this case Algo-
rithm 2,4 is better than Algorithm 2p,

Example 5. Set a;, = 1/(2k + 1), S = w/4. Here

w(z) = 1272, so zw(2?) is analytic and we again
get convergence v~". Once again Algorithm 2, is
better.

Example 6. Set a), = 1/(3k+1), S = (log 2+7/v/3)/3.
Here w(z) = $2~?/* with a singularity at 0, so the
convergence is like 57". Hence in this case Algo-
rithm 25 is better than Algorithm 24.

Example 7. Set a;, = 1/(k + 1)?, S = 7?/12. Here
w(z) = log(1/x), again with a singularity at 0, so
we get 37" convergence. The same applies to a; =
1/(k+1)*, where w(z) is proportional to log® " (1/x)
and the convergence is again like §~". Again Algo-
rithm 25 is better.

Example 8. Set a;, = 1/(k*+1), S = L +n/(e"—e ™).
Here w(z) = sin(log(1/x))/z, again with conver-
gence like 37 ™. Again Algorithm 25 is better.

Proof of Proposition 2. We first consider the case of
Algorithm 2,4. The first thing we need to know is
the asymptotic behavior of A, (—1). According to
Lagrange’s formula, if 2 = a+wep(z) with ¢ analytic
around a then

o0
wn

dz "
T ;%@P (a)) o (10)

(differentiate [Hurwitz and Courant 1929, p. 138,
eq. (8)] with respect to a taking f(z) = z, for exam-
ple). Choosing ¢(z) =sin2z,w =wu/2 and a =t in
combination with (9) yields the identity
o0 oy 1
ZAn(sm t)u"

n=0

(11)

- 1 —wucos2z

U i 9o
z72stz_t

and in particular

>
z— % sin 2z=4iL

- 1 —wucos2z



Cohen, Rodriguez Villegas, and Zagier: Convergence Acceleration of Alternating Series 9

FIGURE 1. The sets CA and CB.

where L = log(v/2+1) (or, more precisely, any value
+log(v/2 + 1) +inm). To find the limiting value of
| A, (=1)]*", we need to look at the values of u for
which the expression on the right becomes singular.
This clearly happens if ucos2z = 1 for a value of z
with

z —(u/2)sin2z =iL.

The smallest value of |u| occurs for z = iy /2 and
equals 1/84, with a4 and (4 as in the proposition.
Hence limsup,,_, . |4,(—=1)]*/" = 84. A more care-
ful analysis gives

An(_

n+1/2/W

or even an asymptotic expansion, but we will not
use this.

Now if we used the proof of Proposition 1 directly
the error term R2 would be estimated essentially by
M, /A, (—1), where

My = Orgzaé(l [An ()]
Using (11), one can show that this number grows
like (1.5088...)" (the maximum is attained at 2 = §
if n is even), leading to an error estimate of about
5.237™, which is worse than we had before. But of
course the motivation for introducting the polyno-
mials P{™ and the diagonal subsequence A,, was to
improve the error term by assuming that the func-
tion w(x) or h(t) was smooth and use repeated in-
tegration by parts; see (6). Making this assumption

and doing the integration by parts we obtain
1)R; = / A, ) de
1 —l— x

= / A, (sin® t) h(t) dt

©/2
= 2”171! /0 c;lt (sin™(2t)) h(t) dt
L [ 0

2nn! dtm

so by Taylor’s theorem

> n/
3 A~ =/ 2 h(t— g sin2t> dt.
n=0 0

As t goes from 0 to 7/2 for a fixed (complex) value
of u, the argument ¢ — 3 sin2¢ moves along a path
C, connecting the points 0 and w/2. If for some
r > 0 the function h(t) is entire in the region D(r) =
U|u\ <r C., then the above integral representation of
S A, (—1) R*u™ shows that this sum is analytic in

the disc |u| < r and hence that

limsup |4, (—1)RAY™ < 1/r.

n—oo
The best value of r we can hope for (unless w is very
special) is the number rq = 2.27306. .., for which
the point ¢t = iL lies on the boundary of D(r), since
at this point the denominator 1+ sin®t of h(t) will
vanish. (The value of ry can be computed by simple
calculus: 7 is the minimum of 2v/¢? + L? /|sin 2¢| for

t € [0,7/2] and is equal to \/4ty/ sin 4ty with t, as



10 Experimental Mathematics, Vol. 9 (2000), No. 1

in the proposition.) This then leads to the estimate
limsup,,_, ., |[RAY" < v5" with y4 = 784, and is
valid whenever h is analytic in D(r) or equivalently,
whenever w is analytic in the region {sin’t | ¢ €
D(ry)}, which is the region bounded by Curve CB in
Figure 1. If w(z) has a singularity within this region
then we get a worse estimate. In particular, if w(x)
has a singularity at the origin, as in the examples
3-6 above and many others, then the convergence of
5S4 to S will be like 3,™ if h(t) has no singularities in
D(1), since r =1 is the largest value of r for which
0 is not in the interior of D(r). The boundary of
the region {sin”¢ |t € D(1)} is shown as Curve CA
in Figure 1.

The case of Algorithm 2p is very similar, but
slightly more complicated. We sketch it briefly. To
be able to apply Lagrange’s formula (10), we intro-

duce
1 d m vit - e—2it
— - 7 o)™
On(t) = rgm <dt> <(e Sin20)" o
so that
By, (sin® t) = Ot + Cms1 (=) for m > 0.

2tm

Then a similar use of Lagrange’s formula (10) shows
that
limsup |C,, (£iL)|*™ = (%,
m—> 00
so that limsup|B,(—1)|*/" = B when n — oo
through even values of n. A similar proof shows
that the same holds for odd values.

The rest of the proof is essentially unchanged, still
using the functions C,,(t). Since e** is of modu-
lus 1 when ¢ is real, the domains of analycity re-
quired for w(sin®¢t) are still the same. We thus ob-
tain limsup,, . |Bam (—=1)RE |/™ < 1/ry and simi-
larly for 2m+1, hence lim sup,,_, . |Bn(—1)RZ|*/" <
1//7o as claimed. O

Remarks. 1. More generally we can consider Algo-
rithm 2, with @,, proportional to P{™ with m =
n/(1 +v) + O(1) and v > 0, Algorithm 24 corre-
sponding to v = 0 and Algorithm 25 to v =1 (the
exact choice of m has no effect on the speed of con-
vergence of the algorithm). The same analysis as
before shows that the analogue of Proposition 2 re-
mains true (with the same curves CA and CB as

before), but with the numbers § and v occurring
there replaced by

B, = (" (cosh v + vsinh oz))l/(VH)

Té/(l’+1) B8,

T =

where o = o, is a root of a — 1/(cotha +v) = 2L
and 1y = 2.2736... is the same number as before.

It can be shown that v = 0, i.e. Algorithm 2,4,
gives the largest value of 7,, and that v = 1, i.e. Al-
gorithm 25, gives the largest value of §,, whence the
choice of these two algorithms. (Note: the largest
value of v, is in fact obtained for v = —0.123559.. ..,
but we must restrict to non-negative values of v
since otherwise more than n terms of the sequence
{ay} are used.)

2. We do not claim that the sequences of polyno-
mials that we have given give the best results, only
that they are natural choices. Other sequences of
polynomials P, can be used for linear acceleration
of alternating sequences which for certain classes of
sequences {a,} will give even better convergence.
These sequences of polynomials are related to poly-
nomials which are used in Diophantine approxima-
tion to get good irrationality measures for numbers
such as log 2, 7 or {(3), following the works of Apéry,
Beukers, Rhin et al.

3. For sequences {a;} for which w(z) is analytic
in an even larger region than the one bounded by
Curve CB, we can improve the 17.937" bound for
Algorithm 2,4 by taking a linear combination of a
and some standard sequence like

L
k+1

ay =
to force w(x) to vanish at —1. Then
S, =8+w(-1)(S° - 5% +e,,

where the error term ¢,, tends to 0 faster than before
(and even more than exponentially if w(z) is entire,
since the modified series

w/2
Z Qn(-1)R,u" = / (entire in ¢, u) dt
0

has infinite radius of convergence), and using this
with two different values of n to eliminate the w(—1)
term we get improved approximations to S.
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APPLICABILITY

Since we have given three algorithms, some advice
is necessary to be able to choose between the three.

If the sequence {a;} is very easy to compute and
not too many decimal digits are required (say at
most 1000), we suggest using Algorithm 1, which
has the advantage of being by far the simplest to
implement and which does not require any storage.
This is the default choice made in the Pari system
for example.

If the sequence {a;} already converges to 0 at a
geometric rate, then w(z) cannot be analytic and
hence Algorithm 1 should again be chosen, taking
into account Remark 8 on page 5.

If the sequence {a;} is difficult to compute or if a
large number of decimal digits are desired, it should
be better to use Algorithms 24 or 2. Since a priori
one does not know the analytic behavior of w(z),
in view of the examples which have been presented,
w(z) has frequently a singularity at = 0, hence we
suggest using Algorithm 25. Of course, if we know
that w(z) is much better behaved, then Algorithm
2 4 becomes useful also.

EXTENSION TO CERTAIN NONALTERNATING SERIES

The algorithms given can also be used in cases where
alternating series occur only indirectly.

A first example is the summation of series with
positive terms. Using a trick due to Van Wijngaar-
den and described in [Press et al. 1988], such a series
can be converted to an alternating series as follows:

iak = i(—l)mbm with b, = i2ka2km.
k=1 m=1 k=0

In this case the coefficients b,, of the alternating
sum are themselves infinite sums, hence are hard to
compute, and so it is usually useful to use Algorithm
2p instead of Algorithm 1.

A second example is the computation of continued
fractions S = by /(c; + ba/(ca + -+ +)) with by and ¢
positive. The standard theory of continued fractions

shows that one can rewrite S as an “alternating”
sum

_ by B b1bs n b1b2bs B
qoq1 q192 q243

where the ¢, are defined by ¢ 1 = 0, ¢o = 1 and
Gn = CpQn_1+ b,q,_», and we can then apply one of
the given algorithms to the sequence

S

o H1§ j<k+1 bj
ap = —=—=—7—-.
dk9k+1

Note that frequently continued fractions converge
geometrically (this is true for example in the case
of simple continued fractions, i.e. by = 1 for all k£
and ay positive integers) hence Remark 8 on page 5
must be taken into account, and Algorithm 1 should

usually be preferred.
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